InvestmentTrackerApp/PortfolioJournal/Services/PredictionEngine.swift

466 lines
16 KiB
Swift

import Foundation
class PredictionEngine {
static let shared = PredictionEngine()
private let context = CoreDataStack.shared.viewContext
// MARK: - Performance: Cached Calendar reference
private static let calendar = Calendar.current
private init() {}
// MARK: - Main Prediction Interface
func predict(
snapshots: [Snapshot],
monthsAhead: Int = 12,
algorithm: PredictionAlgorithm? = nil
) -> PredictionResult {
guard snapshots.count >= 3 else {
return PredictionResult(
predictions: [],
algorithm: .linear,
accuracy: 0,
volatility: 0
)
}
// Sort snapshots by date
let sortedSnapshots = snapshots.sorted { $0.date < $1.date }
// Calculate volatility for algorithm selection
let volatility = calculateVolatility(snapshots: sortedSnapshots)
// Select algorithm if not specified
let selectedAlgorithm = algorithm ?? selectBestAlgorithm(volatility: volatility)
// Generate predictions
let predictions: [Prediction]
let accuracy: Double
switch selectedAlgorithm {
case .linear:
predictions = predictLinear(snapshots: sortedSnapshots, monthsAhead: monthsAhead)
accuracy = calculateLinearAccuracy(snapshots: sortedSnapshots)
case .exponentialSmoothing:
predictions = predictExponentialSmoothing(snapshots: sortedSnapshots, monthsAhead: monthsAhead)
accuracy = calculateESAccuracy(snapshots: sortedSnapshots)
case .movingAverage:
predictions = predictMovingAverage(snapshots: sortedSnapshots, monthsAhead: monthsAhead)
accuracy = calculateMAAccuracy(snapshots: sortedSnapshots)
case .holtTrend:
predictions = predictHoltTrend(snapshots: sortedSnapshots, monthsAhead: monthsAhead)
accuracy = calculateHoltAccuracy(snapshots: sortedSnapshots)
}
return PredictionResult(
predictions: predictions,
algorithm: selectedAlgorithm,
accuracy: accuracy,
volatility: volatility
)
}
// MARK: - Algorithm Selection
private func selectBestAlgorithm(volatility: Double) -> PredictionAlgorithm {
switch volatility {
case 0..<8:
return .holtTrend
case 8..<20:
return .exponentialSmoothing
default:
return .movingAverage
}
}
// MARK: - Linear Regression
func predictLinear(snapshots: [Snapshot], monthsAhead: Int = 12) -> [Prediction] {
guard snapshots.count >= 3 else { return [] }
guard let firstDate = snapshots.first?.date else { return [] }
let dataPoints: [(x: Double, y: Double)] = snapshots.map { snapshot in
let daysSinceStart = snapshot.date.timeIntervalSince(firstDate) / 86400
return (x: daysSinceStart, y: snapshot.decimalValue.doubleValue)
}
let (slope, intercept) = calculateLinearRegression(dataPoints: dataPoints)
let residualStdDev = calculateResidualStdDev(dataPoints: dataPoints, slope: slope, intercept: intercept)
var predictions: [Prediction] = []
let lastDate = snapshots.last!.date
for month in 1...monthsAhead {
guard let futureDate = Self.calendar.date(
byAdding: .month,
value: month,
to: lastDate
) else { continue }
let daysFromStart = futureDate.timeIntervalSince(firstDate) / 86400
let predictedValue = max(0, slope * daysFromStart + intercept)
// Widen confidence interval for further predictions
let confidenceMultiplier = 1.0 + (Double(month) * 0.02)
let intervalWidth = residualStdDev * 1.96 * confidenceMultiplier
predictions.append(Prediction(
date: futureDate,
predictedValue: Decimal(predictedValue),
algorithm: .linear,
confidenceInterval: Prediction.ConfidenceInterval(
lower: Decimal(max(0, predictedValue - intervalWidth)),
upper: Decimal(predictedValue + intervalWidth)
)
))
}
return predictions
}
private func calculateLinearRegression(
dataPoints: [(x: Double, y: Double)]
) -> (slope: Double, intercept: Double) {
let n = Double(dataPoints.count)
let sumX = dataPoints.reduce(0) { $0 + $1.x }
let sumY = dataPoints.reduce(0) { $0 + $1.y }
let sumXY = dataPoints.reduce(0) { $0 + ($1.x * $1.y) }
let sumX2 = dataPoints.reduce(0) { $0 + ($1.x * $1.x) }
let denominator = n * sumX2 - sumX * sumX
guard denominator != 0 else { return (0, sumY / n) }
let slope = (n * sumXY - sumX * sumY) / denominator
let intercept = (sumY - slope * sumX) / n
return (slope, intercept)
}
private func calculateResidualStdDev(
dataPoints: [(x: Double, y: Double)],
slope: Double,
intercept: Double
) -> Double {
guard dataPoints.count > 2 else { return 0 }
let residuals = dataPoints.map { point in
let predicted = slope * point.x + intercept
return pow(point.y - predicted, 2)
}
let meanSquaredError = residuals.reduce(0, +) / Double(dataPoints.count - 2)
return sqrt(meanSquaredError)
}
private func calculateLinearAccuracy(snapshots: [Snapshot]) -> Double {
guard snapshots.count >= 5 else { return 0.5 }
// Use last 20% of data for validation
let splitIndex = Int(Double(snapshots.count) * 0.8)
let trainingData = Array(snapshots.prefix(splitIndex))
let validationData = Array(snapshots.suffix(from: splitIndex))
guard let firstDate = trainingData.first?.date else { return 0.5 }
let trainPoints = trainingData.map { snapshot in
(x: snapshot.date.timeIntervalSince(firstDate) / 86400, y: snapshot.decimalValue.doubleValue)
}
let (slope, intercept) = calculateLinearRegression(dataPoints: trainPoints)
// Calculate R-squared on validation data
let validationValues = validationData.map { $0.decimalValue.doubleValue }
let meanValidation = validationValues.reduce(0, +) / Double(validationValues.count)
var ssRes: Double = 0
var ssTot: Double = 0
for snapshot in validationData {
let x = snapshot.date.timeIntervalSince(firstDate) / 86400
let actual = snapshot.decimalValue.doubleValue
let predicted = slope * x + intercept
ssRes += pow(actual - predicted, 2)
ssTot += pow(actual - meanValidation, 2)
}
guard ssTot != 0 else { return 0.5 }
let rSquared = max(0, 1 - (ssRes / ssTot))
return min(1.0, rSquared)
}
// MARK: - Exponential Smoothing
func predictExponentialSmoothing(
snapshots: [Snapshot],
monthsAhead: Int = 12,
alpha: Double = 0.3
) -> [Prediction] {
guard snapshots.count >= 3 else { return [] }
let values = snapshots.map { $0.decimalValue.doubleValue }
// Calculate smoothed values
var smoothed = values[0]
for i in 1..<values.count {
smoothed = alpha * values[i] + (1 - alpha) * smoothed
}
// Calculate trend
var trend: Double = 0
if values.count >= 2 {
let recentChange = values.suffix(3).reduce(0) { $0 + $1 } / 3.0 -
values.prefix(3).reduce(0) { $0 + $1 } / 3.0
trend = recentChange / Double(values.count)
}
// Calculate standard deviation for confidence interval
let stdDev = calculateStdDev(values: values)
var predictions: [Prediction] = []
let lastDate = snapshots.last!.date
for month in 1...monthsAhead {
guard let futureDate = Self.calendar.date(
byAdding: .month,
value: month,
to: lastDate
) else { continue }
let predictedValue = max(0, smoothed + trend * Double(month))
let intervalWidth = stdDev * 1.96 * (1.0 + Double(month) * 0.05)
predictions.append(Prediction(
date: futureDate,
predictedValue: Decimal(predictedValue),
algorithm: .exponentialSmoothing,
confidenceInterval: Prediction.ConfidenceInterval(
lower: Decimal(max(0, predictedValue - intervalWidth)),
upper: Decimal(predictedValue + intervalWidth)
)
))
}
return predictions
}
private func calculateESAccuracy(snapshots: [Snapshot]) -> Double {
guard snapshots.count >= 5 else { return 0.5 }
let values = snapshots.map { $0.decimalValue.doubleValue }
let splitIndex = Int(Double(values.count) * 0.8)
var smoothed = values[0]
for i in 1..<splitIndex {
smoothed = 0.3 * values[i] + 0.7 * smoothed
}
let validationValues = Array(values.suffix(from: splitIndex))
let meanValidation = validationValues.reduce(0, +) / Double(validationValues.count)
var ssRes: Double = 0
var ssTot: Double = 0
for (i, actual) in validationValues.enumerated() {
let predicted = smoothed + (smoothed - values[splitIndex - 1]) * Double(i + 1) / Double(splitIndex)
ssRes += pow(actual - predicted, 2)
ssTot += pow(actual - meanValidation, 2)
}
guard ssTot != 0 else { return 0.5 }
return max(0, min(1.0, 1 - (ssRes / ssTot)))
}
// MARK: - Moving Average
func predictMovingAverage(
snapshots: [Snapshot],
monthsAhead: Int = 12,
windowSize: Int = 3
) -> [Prediction] {
guard snapshots.count >= windowSize else { return [] }
let values = snapshots.map { $0.decimalValue.doubleValue }
// Calculate moving average of last window
let recentValues = Array(values.suffix(windowSize))
let movingAverage = recentValues.reduce(0, +) / Double(windowSize)
// Calculate average monthly change
var changes: [Double] = []
for i in 1..<values.count {
changes.append(values[i] - values[i - 1])
}
let avgChange = changes.isEmpty ? 0 : changes.reduce(0, +) / Double(changes.count)
let stdDev = calculateStdDev(values: values)
var predictions: [Prediction] = []
let lastDate = snapshots.last!.date
for month in 1...monthsAhead {
guard let futureDate = Self.calendar.date(
byAdding: .month,
value: month,
to: lastDate
) else { continue }
let predictedValue = max(0, movingAverage + avgChange * Double(month))
let intervalWidth = stdDev * 1.96 * (1.0 + Double(month) * 0.03)
predictions.append(Prediction(
date: futureDate,
predictedValue: Decimal(predictedValue),
algorithm: .movingAverage,
confidenceInterval: Prediction.ConfidenceInterval(
lower: Decimal(max(0, predictedValue - intervalWidth)),
upper: Decimal(predictedValue + intervalWidth)
)
))
}
return predictions
}
private func calculateMAAccuracy(snapshots: [Snapshot]) -> Double {
guard snapshots.count >= 5 else { return 0.5 }
let values = snapshots.map { $0.decimalValue.doubleValue }
let windowSize = 3
let splitIndex = Int(Double(values.count) * 0.8)
guard splitIndex > windowSize else { return 0.5 }
let recentWindow = Array(values[(splitIndex - windowSize)..<splitIndex])
let movingAvg = recentWindow.reduce(0, +) / Double(windowSize)
let validationValues = Array(values.suffix(from: splitIndex))
let meanValidation = validationValues.reduce(0, +) / Double(validationValues.count)
var ssRes: Double = 0
var ssTot: Double = 0
for actual in validationValues {
ssRes += pow(actual - movingAvg, 2)
ssTot += pow(actual - meanValidation, 2)
}
guard ssTot != 0 else { return 0.5 }
return max(0, min(1.0, 1 - (ssRes / ssTot)))
}
// MARK: - Holt Trend (Double Exponential Smoothing)
func predictHoltTrend(
snapshots: [Snapshot],
monthsAhead: Int = 12,
alpha: Double = 0.4,
beta: Double = 0.3
) -> [Prediction] {
guard snapshots.count >= 3 else { return [] }
let values = snapshots.map { $0.decimalValue.doubleValue }
var level = values[0]
var trend = values[1] - values[0]
var fitted: [Double] = []
for value in values {
let lastLevel = level
level = alpha * value + (1 - alpha) * (level + trend)
trend = beta * (level - lastLevel) + (1 - beta) * trend
fitted.append(level + trend)
}
let residuals = zip(values, fitted).map { $0 - $1 }
let stdDev = calculateStdDev(values: residuals)
var predictions: [Prediction] = []
let lastDate = snapshots.last!.date
for month in 1...monthsAhead {
guard let futureDate = Self.calendar.date(
byAdding: .month,
value: month,
to: lastDate
) else { continue }
let predictedValue = max(0, level + Double(month) * trend)
let intervalWidth = stdDev * 1.96 * (1.0 + Double(month) * 0.04)
predictions.append(Prediction(
date: futureDate,
predictedValue: Decimal(predictedValue),
algorithm: .holtTrend,
confidenceInterval: Prediction.ConfidenceInterval(
lower: Decimal(max(0, predictedValue - intervalWidth)),
upper: Decimal(predictedValue + intervalWidth)
)
))
}
return predictions
}
private func calculateHoltAccuracy(snapshots: [Snapshot]) -> Double {
guard snapshots.count >= 5 else { return 0.5 }
let values = snapshots.map { $0.decimalValue.doubleValue }
let splitIndex = Int(Double(values.count) * 0.8)
guard splitIndex >= 2 else { return 0.5 }
var level = values[0]
var trend = values[1] - values[0]
for value in values.prefix(splitIndex) {
let lastLevel = level
level = 0.4 * value + 0.6 * (level + trend)
trend = 0.3 * (level - lastLevel) + 0.7 * trend
}
let validationValues = Array(values.suffix(from: splitIndex))
let meanValidation = validationValues.reduce(0, +) / Double(validationValues.count)
var ssRes: Double = 0
var ssTot: Double = 0
for (i, actual) in validationValues.enumerated() {
let predicted = level + Double(i + 1) * trend
ssRes += pow(actual - predicted, 2)
ssTot += pow(actual - meanValidation, 2)
}
guard ssTot != 0 else { return 0.5 }
return max(0, min(1.0, 1 - (ssRes / ssTot)))
}
// MARK: - Helpers
private func calculateVolatility(snapshots: [Snapshot]) -> Double {
let values = snapshots.map { $0.decimalValue.doubleValue }
guard values.count >= 2 else { return 0 }
var returns: [Double] = []
for i in 1..<values.count {
guard values[i - 1] != 0 else { continue }
let periodReturn = (values[i] - values[i - 1]) / values[i - 1] * 100
returns.append(periodReturn)
}
return calculateStdDev(values: returns)
}
private func calculateStdDev(values: [Double]) -> Double {
guard values.count >= 2 else { return 0 }
let mean = values.reduce(0, +) / Double(values.count)
let squaredDifferences = values.map { pow($0 - mean, 2) }
let variance = squaredDifferences.reduce(0, +) / Double(values.count - 1)
return sqrt(variance)
}
}